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A coupled finite-element boundary-element method for solving parametric models of eddy current problems is proposed. Affine
approximation by the empirical interpolation method makes the numerical model accessible to projection-based parametric model-
order reduction. The resulting low-dimensional system provides high evaluation speed at an accuracy comparable to that of the
underlying discretization method.
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I. INTRODUCTION

IN the numerical modeling of eddy current problems, such as
inductive power transfer systems, one commonly encounters

geometrical parameters, especially rigid body motion.
One way to tackle this class of problems is by the finite-

element (FE) method in combination with a mesh morphing
strategy [1]. This approach imposes some restrictions on the
parameter variations, because the morphing method must yield
a valid mesh with sufficient element quality. Alternatively,
a coupled FE-boundary-element (FE-BE) scheme [2] can be
used, which does not require a mesh between the rigid bodies.

The FE-BE method involves assembling and solving a large
system of equations. While a single solution may not be
expensive on a modern computer, tasks like numerical opti-
mization or response surface modeling over a large parameter
domain require large numbers of solutions and are thus time-
consuming.

Projection-based methods of parametric model-order reduc-
tion (MOR) greatly reduce computational times. However, they
require the underlying model to exhibit affine parameterization,
which is not the case for the boundary-element (BE) part of
the FE-BE method. To make the model accessible to MOR,
we propose to approximate Green’s function in affine form by
means of the empirical interpolation method [3]. The resulting
reduced-order model (ROM) features low dimension, and its
error is controllable by the size of the ROM.

This paper considers the time-harmonic case only. However,
the authors do not foresee any problem with the generalization
to the time-domain. In case of non-linearities within the FE
region, a suitable MOR method [4] must be applied.

II. ORDER REDUCTION FRAMEWORK

We consider the AV -A FE eddy current formulation [5] in
combination with the BE formulation from [2]. The coupled
problem for a given parameter configuration leads to an N -
dimensional system of linear equations of the form[

M + N B
BT A

] [
xFE

xBE

]
=

[
bFE

0

]
, (1)

where M is a sparse FE matrix, and B, N, and A are dense BE
matrices. The FE excitation vector is denoted by bFE and the
solution vector by xFE and xBE , respectively. Let V ∈ CN×n,
n� N , be a suitable projection matrix so that[

xFE

xBE

]
≈ Vx̂. (2)

Then, a projection-based ROM for (1) is given by

VH

[
M + N B
BT A

]
Vx̂ = VH

[
bFE

0

]
, (3)

with the conjugate transpose (·)H . Let p ∈ Rp be a p-
dimensional parameter vector that describes rigid body motion.
While the FE matrix M is constant with respect to p, the BE
matrices are parameter-dependent:

X = X(p), for X ∈ {B,N,A} . (4)

So, although the ROM is of low dimension n, its evaluation is
independent of the original dimension N only if the left-hand
side of (3) is affine in the parameter vector p, i.e., of the form

X(p) =
∑
i

Θi(p)Xi (5)

with scalar-valued functions Θi and constant matrices Xi. This
is not the case for the BE matrices.

We illustrate the proposed MOR framework by reference to
the matrix block A, which is given by

[A]ij (p) =

∫∫
ΓΓ

vi(x0) · vj(y0)G(x0,y0,p) dΓy dΓx; (6)

see [2]. Therein, vi are divergence-free trial functions, and sub-
script 0 indicates the reference configuration. The parameter-
dependence is implicitly contained in Green’s function for the
Laplace operator

G(x0,y0,p) =
1

4π |f(x0,p)− f(y0,p)|
, (7)

wherein the function f maps the coordinates under rigid body
motion. The key idea is to perform an affine approximation of
Green’s function
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Fig. 1. Sketch of sample WPT system with two litz wire coils. Dimensions in
mm: dr,o = 32.5, dr,i = 19.5, hr = 1.5, dt,o = 44, dt,i = 20.5, ht = 2.1,
df = 50, hf = 2, g = 0, th = 0. Ferrite: µr = 850.

G(x0,y0,p) ≈ G̃(x0,y0,p) =
∑
i

Θi(p)qi(x0,y0) (8)

by means of the empirical interpolation method (EIM) [3].
In a related work [6], Green’s function for the Helmholtz
operator was approximated by EIM, taking the wavenumber as
a parameter. By plugging the approximation (8) into (6), the
matrix A becomes affine in p. The affine form carries over to
the ROM (3), which can thus be evaluated at any values of p
without performing operations of complexity N .

III. NUMERICAL EXAMPLE

This abstract presents results for two bodies and transla-
tional movement only. The general case will be given in the
conference presentation. Fig. 1 shows a wireless power transfer
system with variable vertical distance tv ∈ [8 . . . 12] mm.

The coils are wound from litz wire, which are treated by the
homogenization method of [1]. The reference FE-BE model
features 39,952 FE degrees of freedom (DoF) and 343 BE
DoFs. The EIM is based on an adaptive greedy strategy on
a dense sampling of the parameter domain with the error
indicator

‖G̃−G‖2
‖G‖2

< 10−3, (9)

[G] = G(x0,y0,p) for all pairs (x0,y0). (10)

In the present example, this procedure results in 7 coefficient
matrices Ai in the approximation (5) to A. To generate the
ROM, a multi-point approach similar to [7] is used, employing
the relative residual r as error indicator. For the termination
criterion r < 10−5, the ROM has the dimension n = 16.

Fig. 2 presents the coupling inductance L12 between the
coils as a function of the distance tv , at 101 equidistant
sampling points. It was calculated by the FE-BE reference
model, by the affine approximation to the BE part after (8),
and by the ROM. The curves cannot be visually distinguished.
Fig. 3 gives the relative error e,

e =
∣∣L12 − Lref

12

∣∣ /Lref
12, (11)

for the ROM with respect to the reference FE-BE system
(total error) as well as with respect to the affine model. The
total error lies below 2 · 10−4, which is deemed sufficient for
practical applications. The error introduced solely by the MOR
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Fig. 2. Coupling inductance L12 as a function of vertical distance tv .
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(a) Error w.r.t. FE-BE reference.
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(b) Error w.r.t. affine approximation.

Fig. 3. Relative ROM error versus vertical distance tv .

process lies in the range of 10−6, indicating that the affine
approximation is the dominant source of error.

The following runtime comparison demonstrates the compu-
tational efficiency of the ROM: Solving the FE-BE reference
model takes 207 s excluding the time-consuming BE matrix
assembly, whereas solving the ROM takes only 0.27 s, using
prototype MATLAB code.
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